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Table S1. Parameters and code snippets used with the different machine learning algorithms. 

RF RandomForestClassifier(n_estimators=1200, class_weight="balanced", 

max_features='log2',bootstrap=True,min_samples_split = 8, 

min_samples_leaf = 3, n_jobs = -1) 

SVM SGDClassifier(loss='hinge', penalty='l2', alpha=0.0001, l1_ratio=0.15, 

fit_intercept=True, max_iter=10000,tol=0.001, shuffle=True, verbose=0, 

epsilon=0.1, n_jobs=-1, random_state=None, learning_rate='optimal', 

eta0=0.0007, power_t=0.5, class_weight='balanced', warm_start=False, 

average=5) 

LightGBM lgb.LGBMClassifier(boosting_type='dart', num_leaves=42, max_depth=-1, 

learning_rate=0.25, n_estimators=1200, subsample_for_bin=200000,              

objective='binary', is_unbalance=False, max_bin=200, 

min_child_weight=0.001, min_child_samples=30, subsample=1.0, 

subsample_freq=0, colsample_bytree=1.0, reg_alpha=0.0, reg_lambda=0.0, 

random_state=None, n_jobs=-1, silent=True,                               

importance_type='split') 

GCNN self.conv1 = GCNConv(n_features, 128, cached=False)  

self.bn1 = BatchNorm1d(128) 

self.conv2 = GCNConv(128, 64, cached=False) 

self.bn2 = BatchNorm1d(64) 

self.fc1 = Linear(64, 64) 

self.bn3 = BatchNorm1d(64) 

self.fc2 = Linear(64, 64) 

self.fc3 = Linear(64, 1) 

Loss: Categorical Crossentropy 

Batch size: 128 

Optimizer: adam 

Epochs: 20 

DNN 5 Dense layers,Units: [512,128,64,16,2], Activation: 

[Sigmoid,ReLu,ReLu,Relu,SoftMax], Loss: ‘Categorical Crossentropy’, 

Optimizer: adam, Batch-size: 500, Epochs: 5, Class weight: balanced with 



sklearn.utils.class_weight.compute_class_weight() 

 

 

Fig S1. Active recovery curves for each AID with 10% start size and 5% iteration sizes. Three 

experiments were run for each AID, each experiment used a different random set of starting 

compounds. Within each experiment, each classifier was initially trained on the same set of starting 

compounds and subsequent selections were made based on its predicted scores for each iteration. 

Notice that AID_628 displays a different curvature than the other datasets, the low active recovery 

rates at both 35% and 50% are seen as outliers in the boxplots of Fig 2. Additionally, the 

performance of each model on different starting sets (represented by solid, large dashed, and small 

dashed lines) is relatively consistent for each AID. This consistency adds to our confidence that 

starting set selection has limited influence in the overall performance of the methods we present.  

 

Table S2. Mean percentage of active compounds recovered across all experiments for each method 

for a 10% start and iterations of 5%. 



Method % of library screened Mean % of actives 
recovered 

Standard deviation 

SVM 35 % 74.54 7.4 

SVM 50 % 86.78 6.23 

RF 35 % 77.49 6.63 

RF 50 % 88.74 5.93 

LGBM 35 % 75.11 8.09 

LGBM 50 % 86.55 7.38 

DNN 35 % 75.30 7.02 

DNN 50 % 87.23 6.39 

GCNN 35 % 71.40 6.98 

GCNN 50 % 85.3 6.01 

random 35 % 36.06 2.27 

random 50 % 51.10 2.05 

 

Table S3. Median percentage of active compounds recovered across all experiments for each 

method for a 10% start and iterations of 5%. 

Method % of library screened Median % of actives 
recovered 

SVM 35 % 74.35 

SVM 50 % 88.87 

RF 35 % 77.54 

RF 50 % 90.43 

LGBM 35 % 77.45 

LGBM 50 % 89.83 

DNN 35 % 77.30 

DNN 50 % 90.07 

GCNN 35 % 72.08 

GCNN 50 % 87.42 

random 35 % 36.15 

random 50 % 51.16 

 


